

Remote Sensing & GIS

Dr Doreen Boyd

School of Geography Associate Professor

".....Earth looked so tiny in the heavens that there were times during the Apollo 8 mission [1968] when I had trouble finding it.....the Earth should be thought of as [a] fragile Christmas-tree ball which we should all handle with considerable care..."

Soogle Earth

File Edit View Tools Add Help

Remote Sensing for Earth Observation

- The acquisition of information about the environment without contact with it.
- Uses passive or active electromagnetic radiation

Consider the four main components:

Electromagnetic radiation – the medium by which remote sensing operates

Target – what we are observing

Sensor – measures radiation from the target

Atmosphere – need to consider its influences

Electromagnetic Radiation

Electromagnetic Radiation: Basic Wave Theory

- The waves can be characterised through a number of variables:
- The three variables of wavelength, frequency and speed are related to each other by the general equation:

$$C = V\lambda$$
 (1)

since c is regarded as a constant (3 x 10⁸ msec⁻¹), frequency and wavelength for any given wave are related inversely, and either can be used to categorise any wave.

Transmission of EMR through Atmosphere: the windows

Main Regions of the Electromagnetic Spectrum used in Remote Sensing

Region Name	Wavelength Range	Details		
Visible	0.4 - 0.75µm	Narrow but well used region since the short wavelengths are of high frequency and high energy. Comprises the three additive primaries; blue (0.4 - 0.5 μm), green (0.5 - 0.6 μm) and red (0.6 - 0.7 μm).		
Near Infrared (NIR)	0.75 - 1.5µm	Start of the region beyond the red wavelengths. Like visible region, frequently used in remote sensing.		
Mid Infrared	1.5 - 5.0µm	Comprises two main portions; shortwave infrared (SWIR; 1.5 - 3.0 μ m) and middle infrared (MIR; 3.0 -5.0 μ m). MIR radiation measured by sensors can comprise a mixed signal of reflected solar radiation and radiation emitted from the Earth's surface.		
Thermal Infrared (TIR)	5.0 - 15.0µm	Comprises of long wavelengths of lower frequency and thus lower energy. Much of the thermal infrared signal is comprised of emitted radiation from the Earth's surface.		
Microwave	1mm - 1m	Longest wavelengths used in remote sensing. Passive remote sensing difficult as wavelengths have low energy so some sensors that record microwave radiation in this region generate radiation artificially and measure radiation backscattered from the Earth.		

The University of **Nottingham**

Sources of EMR:

- Natural: all objects with a temperature above absolute zero
 (-273 °C, OK) emit EMR continuously
 - Sun
 - Earth's surface
 - Atmosphere
- Artificial:
 - Radar (radio detection and ranging) (operates at microwave wavelengths).
 - Lidar (light detection and ranging) has grown in popularity recently (uses laser).

Environmental Properties

	Electromagnetic Spectrum (wavebands)					
Environmental	Visible	Near infrared	Middle infrared	Thermal infrared	Microwave	
Component	(0.4-0.7 µm)	(0.7-1.5 µm)	(1.5-5.0 µm)	(5.0-15.0 µm)	(3-300 cm)	
Rock and Soil	 Iron Bearing minerals Texture/structure Soil moisture Organic matter 	 Iron bearing minerals Texture/structure Soil moisture Organic matter 	 Texture/structure Soil moisture Organic matter <i>Carbonates</i> <i>Sulphates</i> 	• Temperature	Surface soil moistureTexture/structure	
Vegetation	Chlorophyl	 Physiological structure Protein Lignin Oil 	 Water content Nitrogen Lignin Sugar Cellulose 	• Temperature	Canopy structure and roughness	
Snow and Ice	 Snow depth Snow grain size 	 Snow water Snow grain size 	 Water/ice differentitaion Cloud/ice differentiation 	• Temperature	Snow depth	
Water	 Organic matter Suspended sediments Chlorophyll 			• Surface temperature	Surface roughness	
Atmosphere	 Aerosol properties Cloud thickness Aerosol optical thickness 	 Water vapour Cloud top height Aerosol optical thickness Precipitable water 	 Cloud particle radius Aerosol optical thickness 	• Cloud temperatures		

The remotely sensed radiation (R) received by a sensor is a function (f) of the location (x), time (t), wavelength (λ) and viewing geometry (θ) of a given area of interest:

 $R = f(\mathbf{x}, t, \lambda, \theta)$

The sensor

The University of Nottingham

Commonly the sensor records the radiation from a target in raster format to produce an image

Each pixel in the image layer displays the Digital Number high DN = high radiance low DN = low radiance

Resolving the pixel

Radiometric resolution

Spatial resolution

Temporal resolution

Image is acquired in each waveband - shows spectral radiance

The University of **Nottingham**

Image is acquired in each waveband - shows spectral radiance

Image is acquired in each waveband - shows spectral radiance

Image display uses colour additive principle

Spatial resolution

 Determined by IFOV and height of platform carrying sensor: controls swath width and pixel size

Platforms available to carry sensors: satellites helicopters planes booms/tripods by hand (terrestrial)

Ikonos (1m)

Thematic Mapper (30m)

AVHRR (1.1km)

Meteosat (4km)

Temporal resolution

Laser scanning

http://www.eurosense.com/UK/serv_laser_uk.htm#Technical Considerations

x,y,20442483.88,112010.73,12.440442483.77 09.05,5.060442498.83,112004.74,5.02044245 003.74,4.930442510.40,112006.44,4.8704425 8.53,14.200442524.29,112010.83,14.0904425 ,112010.61,8.260442532.88,112013.54,8.111 45.74,112009.90,16.270442547.25,112001.74 07.46,16.220442557.01,112008.32,16.430442 42576.05,112000.47,4.650442575.42,112001. 88,5.900442585.96,112012.83,6.000442586. 08.35,4.800442599.23,112000.68,4.230442586. 122010.07,4.630442610.41,112001.53,4.211 31,112008.41,4.580442622.29,112000.19,4.7 635.04,112005.88,6.310442634.87,112008.51 .720442645.59,112010.55,4.630442658.66,11 4.450442645.59,112000.72,4.170442658.66,11 4.450442645.76,112000.72,4.170442658.66,11 9.02,7.360442709.76,112001.40,6.250442645. 9.02,7.360442709.76,112001.40,6.25044271(05.08,4.17044271.69,112008.92,4.20844271

lkonos images

Inference of socioeconomic characteristics from RS

- Studies have documented how quality-of-living indicators, such as house value, median family income, education can be inferred by extracting the following attributes from imagery:
- Building size (sq. ft), plot size (acerage), pool (sq. ft), placement of house on lot (distance from street), houses with driveway (%), health of landscaping, street width (ft), houses with garage.
- The relationship between indicators and imageryderived indicators will vary by region or neighbourhoods.

LARSEN B ICE SHELF

(JAN 31 2002)

Animating ...

Figure 4.1 An example of a global land cover map. The map shown is that derived by DeFries *et al.* (1998) from NOAA AVHRR data. Although full appreciation requires colour, the map indicates the nature of land cover maps typically derived from satellite remote sensor data. The 13 land cover types shown are Evergreen needleleaf forests (1); Evergreen broadleaf forests (2); Deciduous needleleaf forests (3); Deciduous broadleaf forests (4); Mixed forests (5); Woodlands (6); Wooded

Exploiting advances in sensing technology

- EO-1 Hyperion
- Proba CHRIS
- Envisat MERIS
- ADEOS-II GLI

Remote sensing radionuclide contaminated forests in Belarus

The Chernobyl disaster

- Explosion in reactor 4, April 1986
- 85Pbq Cs-137 released into environment
- Belarus received 80% of contamination
- Cs-137 predominant radionuclide still remaining today (half life 30.5 years)

Main Regions of High Levels of Radioactive Fallout (>555kBq/m² Cesium-137 in 2001)

Main Regions of High Levels of Radioactive Fallout (>555kBq/m² Cesium-137 in 2001)

Civinka, Vetka District (relocated 1991)

"My home.. 1940 - 1991"

Agricultural land, forest, enterprises and resources removed from service as a consequence of Chernobyl

- 264 000 ha agricultural land
- 200 000 ha forest
- 54 agricultural & forest enterprises
- 9 service enterprises
- 22 raw material deposits Source: UNDP/UNICEF (2002)

Investigate remote sensing of radionuclide contaminated forest

- Information on radionuclide concentration will afford the division of the forests into categories related to their ecological and economic capabilities.
- Make decisions about future forestry practices and land-use in order to promote a sustainable economy in Belarus

Pinus sylvestris (12-25 years)

0.06 ± 0.01 uSv/hr

1.59 ± 0.72 uSv/hr

Pinus sylvestris (>70 years)

0.15 ± 0.06 uSv/hr

1.67 ± 0.59 uSv/hr

IDRISI 15

NEW Features!

Land Change Modeler for Ecological Sustainability

Machine Learning:

Computer Processing of Remotely-Sensed Images

Autodesk[®]

The

Edition

http://homepage.ntlworld.com/paul.mather/ComputerProcessing3/index.html

Acknowledgments

- Many of the diagrams have been redrawn from Boyd, D.S. (2004) Physical basis of remote sensing. In P.M. Atkinson (ed.) <u>Encyclopaedia of Life Support Systems</u>. UNESCO, New York.
- NERC EPFS/FSF for loan of spectroradiometer to conduct fieldwork in Belarus and colleagues at Universities of Kingston, Northumbria and Salford.